National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Study of gene regulation of nucleoside transporters in BeWo cell line
Strachoňová, Šárka ; Červený, Lukáš (advisor) ; Pávek, Petr (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Šárka Strachoňová Supervisor: PharmDr. Lukáš Červený, Ph.D. Title of diploma thesis: Studium of gene regulation of nucleoside transporters in BeWo cell line Nucleoside transporters (NTs) localized in syncytiotrophoblast control placental uptake of nucleosides. Dysregulation of NTs can disrupt nucleoside homeostasis with a negative consequences on placental and fetal development and can lead to a change in placental pharmacokinetics of nucleoside-derived drugs. Therefore, understanding the expression and function of NTs is necessary for effective and safe pharmacotherapy during pregnancy. The aim of this diploma thesis was to study the adenylate cyclase (AC) activated regulatory pathways of gene expression of concentrative nukleoside transporter 2 (CNT2). For this purpose, qRT-PCR and in vitro accumulation assays using the model substrate [3 H]-adenosine were employed. The human placental choriocarcinoma-derived BeWo cell line has been exposed to an AC activator, forskolin (50 µM), and/or inhibitors of AC/cAMP/PKA, AC/cAMP/MAPK (MEK1/2, p38 MAPK) signaling pathways, PKA inhibitor, KT 5720 (5 μM), an inhibitor of MEK1/2, U0126 (10 μM) and an inhibitor of p38 MAPK, SB202190 (10 μM). The...
Study of gene regulation of nucleoside transporters in BeWo cell line
Strachoňová, Šárka ; Červený, Lukáš (advisor) ; Pávek, Petr (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Šárka Strachoňová Supervisor: PharmDr. Lukáš Červený, Ph.D. Title of diploma thesis: Studium of gene regulation of nucleoside transporters in BeWo cell line Nucleoside transporters (NTs) localized in syncytiotrophoblast control placental uptake of nucleosides. Dysregulation of NTs can disrupt nucleoside homeostasis with a negative consequences on placental and fetal development and can lead to a change in placental pharmacokinetics of nucleoside-derived drugs. Therefore, understanding the expression and function of NTs is necessary for effective and safe pharmacotherapy during pregnancy. The aim of this diploma thesis was to study the adenylate cyclase (AC) activated regulatory pathways of gene expression of concentrative nukleoside transporter 2 (CNT2). For this purpose, qRT-PCR and in vitro accumulation assays using the model substrate [3 H]-adenosine were employed. The human placental choriocarcinoma-derived BeWo cell line has been exposed to an AC activator, forskolin (50 µM), and/or inhibitors of AC/cAMP/PKA, AC/cAMP/MAPK (MEK1/2, p38 MAPK) signaling pathways, PKA inhibitor, KT 5720 (5 μM), an inhibitor of MEK1/2, U0126 (10 μM) and an inhibitor of p38 MAPK, SB202190 (10 μM). The...
Counterbalances: antagonistic regulation of fission yeast growth and proliferation under favourable conditions and stress
Hohoš, Patrik ; Převorovský, Martin (advisor) ; Groušl, Tomáš (referee)
Microorganisms come across dramatically changing conditions in the environment. It is important for them to be agile for a quick and effective response. Signal transduction pathways are essential for this ability. They can sense a broad spectrum of extracellular and intracellular stimuli and regulate a great number of processes in the cell. For unicellular microorganisms, the most essential ability is to sense environmental conditions for proliferation or abnormal stress conditions. One of the most popular model microorganisms, the fission yeast Schizosaccharomyces pombe, is used for the signal transduction pathways research. Findings obtained by research on the fission yeast are applicable to other eukaryotic organisms, thanks to the high conservation of the signal transduction pathways between the fission yeast and other eukaryotic organisms. Proliferation-promoting signal transduction pathways promote cell proliferation, growth and mitotic cell cycle in fission yeast. The stress-response signal transduction pathways play an opposite role. They promote cellular defence against stress stimuli and promote the sexual differentiation process alongside meiotic cell cycle. At first sight, the whole machinery may look like a switch mechanism. There is, however, a more complex crosstalk mechanism...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.